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LETTER TO THE EDITOR 

Explicit asymptotic formulae for the spheroidal angular 
eigenvalues 

L G Guimarzes 
Depammento de FIsica Nudear, Instituto de Fisica, Univesida.de Fedenl do Rio de Janeiro, 
Cx Postal 68528,21945-970, Rio de Janeiro, Brazil 

Received 19 January 1995 

Abshact. Asymptotic form& for the angular spheroidal eigenvalues are found using the 
BohrSommerfeld quantization rule and pertubation theory. Approximate calculations for the 
s e p d o n  between two consecutive eigenvalues are obtained. 

The solution of the spheroidal wave quation has long been a subject of interest in many 
areas of physics. For instance, it plays an important role in the study of light scattering 
in optics [I-31, the nuclear shell model [41, theoretical cosmological models [5], and 
atomic and molecular physics [6]. In all these topics, the related physical system has 
spheroidal symmetry, so that in these cases it is suitable to use a spheroidal coordinate 
system, the natural coordinate system for describing a revolution ellipsoid. Using the 
method of separation variables in this coordinates system, the full wave equation solution 
can be written as products of radial and angular solutions wave equations [7,8]. The radial 
solution is always associated with a specified potential on each particular case, but the 
angular solution is general. In this letter we are interested in calculating the eigenvalues of 
regular prolate spheroidal angle functions, which are the regular solutions of the following 
differential equation [7, 81: 

Here c is the deformation parameter proportional to semifocal distance of the ellipse, e 
is a positive integer (e = 0.1,. . .), the integer m defined in the range -e < m < e, is 
the Lz angular momentum eigenvalue (in units of A = I), and the number (AY(c))* is the 
prolate spheroidal angular eigenvalue. We can observe from (I), the simplest case of c = 0, 
the function Se,m reduces to the associated Legendre function and (h.;(0))2 = P,(L + 1) is 
its eigenvalue. For general c values, h;(c) are the roots of an infinite continued fraction 
transcendental equation [7.8]. For small c and e values, the Taylor expansion series 
is a satisfactory approximation to the exact eigenvalue problem 17, 81. Nevertheless, many 
practical situations such as scattering cross section calculations, need to use hf with large e 
values. Unfortunately, in this regime trying to obtain hy 'by solving the exact transcendental 
equation is impracticable, because for large e values this transcendental equation presents 
many numerical instabilities [8, 91. Eu and Sink [10-12] presented the pioneering work 
that calculated for large e the spheroidal angular functions and their eigenvalues with some 
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accuracy. To that end, they applied semiclassical methods to (l), defined in a finite domain 
-1 < q < 1. In the case of the eigenvalue calculations, they used the semiclassical 
Bohr-Sommerfeld quantization rule subject to a paramehic Langer modification. obtained 
by numerical interpolation. In the present investigation, we will develop for large e explicit 
asymptotic approximations for AT based on semiclassical methods and perturbation theory. 
In order to apply semiclassical methods to ( I )  it is necessary to perform the variable change 
q tgh(x) ,  mapping the finite interval ( - 1 , l )  into the infinite one (-00, CO) and (1) can 
be rewritten as 

The above equation is analogous to a one-dimensional time-independent Schradinger 
equation (in units such that fi = 2m = 1) with energy-like parameter the negative integers 
-mz and subject to an eflective potential V ( x )  (see figure 1). The effective potential V ( x )  
is written in the following manner: 

V ( x )  -((A$ - 2)sech2(x) + c2sech4(x) . (3) 

Using this quantum-mechanical point of view, we can re-interpret the solutions of (2) 
as eigenstates of the effective well potential V ( x ) .  However, in this particular case, the 
effective potential has explicit dependence with eigenvalue. Figure 1 shows that AT satisfies 
the inequality AT > Iml 0, the spectrum for a given e has e + 1 bound states, which 
are doubly degenerate because (2) is invariant under the discrete symmetry m + -m. The 
ground-stare is characterized by the limit Iml = e and behaves a s h :  - O(m), and on the 
other hand, for most excitedstates the spectrum behaves as AT - O(t )  >> Iml. For given 
e, m and c, the classical forbidden region is delimited by the inequality 1x1 > xo (see figure 
I), where xo = xo(l;  m; c) is the classical turning point. The larger separations between 
the two turning points xo and -xo occur when Iml has small values as compared to e .  In 
this situation the Bohr-Sommerfeld quantization rule can be applied with accuracy [13, 141, 

Figwe 1. Shows the effective potential V ( x )  (fuU curve), that has explicit dependence with 
eigenvalue. V ( x )  is an even function that has at the origin the minimum value -(A$. The 
negative integer -m2 plays the role of energy (chain curve) and the XI, and -XII are the two 
clmsical turning  point.^. 
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The above integral can be mapped into an elliptical integral and solved numerically. 
However, for large t values compared to Iml, equation (4) can be solved asymptotically. 
The result for m = 0 is 

In the above asymptotic transcendental equation, the first term in the brackets corresponds to 
the usual Langer modification. Besides, (5) shows that A! is an increasing function of c, so 
that more sharp spheroidal symmetry systems have greater A! values. Equation (5)  has the 
same accuracy of the Bohr-Sommerfeld quantization rule O(l/e2), and can be solved using 
a numerical method. In the present work we use Newton’s method to solve transcendental 
equations. This procedure converges rapidly to the desired A! value, the typical values for 
the number of iterations being less than 10 steps. Table 1 shows and compares these results 
with results obtained by Eu and Sink [lo]. The error with present results is a decreasing .C 
function, so that this theory for large e values has great accuracy. In the case of the ground- 
stute, the two turning points are very close, consequently the use of the BohrSommerfeld 
quantization rule is not suitable. On the other hand, the effective potential V ( x )  is an even 
function whose Taylor expansion in the neighbourhood of the origin behaves as 

(6) V ( X )  

Where Vh,(x) is similar to a quadratic hnrmonic oscillator potential and W ( x )  is an 
anhannonic potential. For the groundstare, A T  is O(lml) and IKJ > IWl for 1x1 c XO. 

Using this fact and (6), we can re-interpret (2) as a harmonic oscillator Schriidinger equation 
subject to a perturbation potential W ( x ) .  Then, using first-order perturbation theory, we 
find for the ground state that the spheroidal eigenvalue (AT)’ with Iml = e satisfies the 
following equation: 

[-(A;)’ + ((Ay)’ + c2)xZ] - (SC’ + 2(A, m ) 2 )- x4 E Vn&) + W ( X )  . 3 

- e2 + 4- - (2 (A:)2 + 5c2) 

4((A$ + c2) 
(Ai)’ (7) 

This transcendental equation can be numerically solved by Newton’s method with 
great accuracy and fast convergence. For such, we use as initial guess the value 

Table 1. Shows .IT, the square root of the angular spheroidal eigenvalues for c = 8 and m = 0 
and compares the Eu work [IO] (the second column) with the premt resulh (the fi& column). 
Notice that the present calculntions have a relative emr of the order O(l/e3), which decreases as 
e increases, while the relative enor associated with the results of [IO] is a numerical intewladng 
e m r  

e Reference[101 Emor% Exact Equation(5) Errors 

5 8.1841 0.29 8.2076 8.0210 2.27 
6 8.8045 0.20 8.8218 8.7244 1.10 
7 9.5318 0.09 9.5232 9.48QO 0.43 
8 10.3223 0.2.5 10.2962 IO2782 0.17 
9 11.1562 0.36 11.1165 11.1103 . ~0.06 
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Table 2. Shows A;. the square mot of the angular spheroidal eigenvalues for c = 8 and m = e 
and compares the Eu work [IO] (the sewnd wlumn) with the p m t  results (the fifth column). 
Notice lhnt the present calcutvions have P relative error of the order 0.01% while the relative 
error asmciated with the results of [IO] is of the order 0.1%. 

e Reference [IO] Error% E m t  Ewtion(7)  Error% 

5 5.8374 0.24 . 5.8234 m z 7  1.20 x 10-2 
6 6.7605 0.18 6.7484 6.7474 1.50 x 10-2 
7 7.7066 0.14 7.6959 7.6948 1.49 x IO-' 
8 8.6822 0.28- ~ 8.6580 8.6569 1.24 x IO-' 
9 9.6381 0.09 ~ 9.6297 9.6287 1.03 x 

8.53 

8.52 

. . . . . . . . , 1 
7.49 

o i 2 3 4 5 8 7 s o m  

Figure 2. Shows for c = 1.2, the A; levels diagram. The level separations are defined by 
AXt =A;+! -A; and SAm f AT+' -A:. We wn observe that 6 1  increases 35 m increases. 
Besides, AX2 >> so that the A T  levels diagram is very similar to B band structure. 

(A:)' - e2 + 112 + m. Table 2 shows and compares ours results wit& previous 
results given by Eu and Sink [IO]. The error of the present theory is the specific error 
associated with perturbation theory, while the error related with Eu and Sink work [lo] is an 
interpolating error. For large e, typically e =- 20 and small c compared to e, this perturbation 
procedure can be used for the calculation of the first excited states with satisfactory accuracy. 

In many quantum-mechanical problems, the calculation of the levels separation is of 
great interest. The levels separation is related to the density of states, whose calculation has 
many applications in quantum mechanics. In the present work we are motivated to calculate 
the levels separation by academic and numerical reasons. In other words, if we have explicit 
formulae for these separations we can use (5) or (7) to generate any A;". We define the 
spheroidal eigenvalues separation for two consecutive 1 and the same m values and for the 
same e and consecutive m values respectively as AAt = A;+i - A;" and &A, E A;+' - A;: 
(see figure 2). Using (4) A;" asymptotic solution formulae and perturbation theory [7, 81 we 
can obtain these separations, which for large e values behave, respectively, as 

AAe-I - ($ )*+-? - (E)3  121r A;" 
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c2 (2m+ 1) 
A'; (72 - I) (72 +3) ' 

SA, - -- 
The above equations have less accuracy than (5) and (7), but we can apply these 

equations in order to obtain a good estimate for any A;. For such, we iterate those formulae 
jointly with (8) and (9). On the other hand, equations (8) and (9) show that for large e 
values the inequality AAt >> ISA,l is valid. 'Consequently, the spheroidal eigenvalues (AT)' 
for the same 1 value form a band structure (see figure 2). The minus signal in (9) implies 
that lower eigenvalues are associated with greater m values (see figure 2). Besides, equation 
(9) shows that the level separation with consecutive m values and the same e value is m 
linearly increasing, then the separation between the first two levels is less than the two last 
levels (see figure 2). 

Our final remarks are that in this letter, using a quantum-mechanical point of view, 
we can re-interpret the angular spheroidal eigenvalue problem as being the problem of 
finding the bound states of the effective potential V ( x ) .  In this particular case, we have 
a non-hivial problem because the potential is related to the eigenvalue (see equation (3)). 
More precisely, we have to find the minimum potential value V(0)  = - (AT) for a given 
energy-fike parameter -m2 (see figure 1). This quantum-mechanical interpretation permits 
us to develop explicit formulae for the angular spheroidal eigenvalues (5). (7) and their 
separations (8). (9). respectively. We think that these results can be improved if we develop 
uniform asymptotic approximations for the spheroidal angular functions [15, 161. These 
approximations have the disadvantage of using the transcendental Airy functions 1161 that 
imply some numerical difficulties. Work on these issues is in progress, and planned to be 
reported briefly. The main results of this work can he applied in some problems related to 
deformation of spherical symmetry. For that purpose, there should be no need to use the 
usual perturbation form theory or any sophisticated numerical method 1171. 

This work is supported in part by the Brazilian agencies CNF'q and FINEP. I thank Professors 
Mauricio Ortiz GalvZo and Paul0 Carrilho for suggestions and many helpful discussions. 
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